Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion–electron-conducting discharge product and its interface with air.more » « less
-
Abstract Sodium–oxygen (Na–O2) batteries are considered a promising energy storage alternative to current state‐of‐the‐art technologies owing to their high theoretical energy density, along with the natural abundance and low price of Na metal. The chemistry of these batteries depends on sodium superoxide (NaO2) or peroxide (Na2O2) being formed/decomposed. Most Na–O2batteries form NaO2, but reversibility is usually quite limited due to side reactions at interfaces. By using new materials, including a highly active catalyst based on vanadium phosphide (VP) nanoparticles, an ether/ionic liquid‐based electrolyte, and an effective sodium bromide (NaBr) anode protection layer, the sources of interface reactivity can be reduced to achieve a Na–O2battery cell that is rechargeable for 1070 cycles with a high energy efficiency of more than 83%. Density functional theory calculations, along with experimental characterization confirm the three factors leading to the long cycle life, including the effectiveness of the NaBr protective layer on the anode, a tetraglyme/EMIM‐BF4based electrolyte that prevents oxidation of the VP cathode catalyst surface, and the EMIM‐BF4ionic liquid aiding in avoiding electrolyte decomposition on NaO2.more » « less
-
Cyclic step-catalysis enables intermittent, atmospheric ammonia production, and can be integrated with sustainable and renewable energy sources. By employing metal (e.g., Mn) nitride, a nitrogen carrier, the rate-limiting N2 activation step is bypassed. In this work, molecular-level pathways, describing the reduction of Mn4N by dissociatively adsorbed hydrogen, were investigated using periodic density functional theory (DFT). The established mechanism confirmed that Fe and Ni doped in the nitride sublayer and top layer can disturb local electronic structures and be exploited to tune the ammonia production activity. The strength of N−M (M = Mn, Fe, Ni) and H−M bonds both determine the overall reduction thermochemistry. DFT-based modeling further showed that the low concentration of Fe or Ni in the Mn4N sublayer facilitates N diffusion by lowering the diffusion energy barrier. Also, these heteroatom dopant species, particularly Ni, decrease the reduction endergonicity, thanks to the strong hydrogen binding with the surface Ni dopant. The Brønsted−Evans−Polanyi relationship and linear scaling relationships have been developed to reveal ammonia evolution kinetic and energetic trends for a series of idealized Fe- and Ni-doped Mn4N. Deviations from the linear scaling relationship have been observed for certain doped systems, indicating potentially more complex behaviors of metal nitrides and intriguing promises for greater ammonia synthesis materials design opportunities.more » « less
-
Abstract Metal–organic frameworks (MOFs) are promising materials for electrocatalysis; however, lack of electrical conductivity in the majority of existing MOFs limits their effective utilization in the field. Herein, an excellent catalytic activity of a 2D copper (Cu)‐based conductive MOF, copper tetrahydroxyquinone (CuTHQ), is reported for aqueous CO2reduction reaction (CO2RR) at low overpotentials. It is revealed that CuTHQ nanoflakes (NFs) with an average lateral size of 140 nm exhibit a negligible overpotential of 16 mV for the activation of this reaction, a high current density of ≈173 mA cm−2at −0.45 V versus RHE, an average Faradaic efficiency (F.E.) of ≈91% toward CO production, and a remarkable turnover frequency as high as ≈20.82 s−1. In the low overpotential range, the obtained CO formation current density is more than 35 and 25 times higher compared to state‐of‐the‐art MOF and MOF‐derived catalysts, respectively. The operando Cu K‐edge X‐ray absorption near edge spectroscopy and density functional theory calculations reveal the existence of reduced Cu (Cu+) during CO2RR which reversibly returns to Cu2+after the reaction. The outstanding CO2catalytic functionality of conductive MOFs (c‐MOFs) can open a way toward high‐energy‐density electrochemical systems.more » « less
An official website of the United States government
